
 1 

 

FINAL TECHNICAL PROJECT REPORT  

 

AUTOMATED PLATE RECOGNITION  

AND TRUCK TRIP TRACKING 
 

Project #: IG1752329 

RES#2016-32 

UT#R01-1313-556 

 

Submitted to 

TDOT Research Office in Long Range Planning 

 

 

 

 

by 

Lee D. Han, Zhihua Zhang, Stephanie Hargrove, and Mark Burton 

of 

Center for Transportation Research 
The University of Tennessee 

 
Submitted: August 2019 

Revised: May 2020 
2nd Revision: January 2021  



Technical Report Documentation Page 

 

1. Report No. 

     RES2016-32 
2. Government Accession No. 

 
3. Recipient's Catalog No. 

 

4. Title and Subtitle 

 

     Automated Plate Recognition and Truck Trip Tracking 

 

 

5. Report Date 

     June 2019 

6.  Performing Organization Code 

 

7. Author(s) 

Han, L., Zhang, Z., Hargrove, S., Burton, M. 
8. Performing Organization Report No. 

 

9. Performing Organization Name and Address 

University of Tennessee Knoxville 

525 John Tickle Engineering Building 

815 Neyland Dr 

Knoxville, TN 37996 

10. Work Unit No. (TRAIS) 

 

11. Contract or Grant No. 

37B355 

12. Sponsoring Agency Name and Address 

Tennessee Department of Transportation 

Research Office 

505 Deaderick Street, Suite 900 

Nashville, TN 37243 

13. Type of Report and Period Covered 

Transportation Research 

August 2016 to June 2019 

14. Sponsoring Agency Code 

 
15. Supplementary Notes 

   

 
16. Abstract 

 

This study sought to apply automated license plate recognition (ALPR) technology to track trucks trips. ALPR 

does not work perfectly in the U.S. because of the thousands of different designs, colors, shapes, fonts, etc. of 

license plate from different states. To overcome this, a class of machine learning algorithms were developed to 

help track trucks by matching license plates read, correctly or incorrectly, by ALPR devices. While these 

unsupervised machine learning algorithms worked great for short distance (<10 miles) scenarios, they have never 

been tested for long distance scenarios, which was the main challenge of this study.  

 

Three sets of field studies were conducted at strategically selected Interstate sites in Tennessee using mobile 

ALPR stations. The first study tracked trucks on I-75 from Georgia to Kentucky and to Virginia via I-81. The 

second study tracked trucks from Georgia and Alabama to Kentucky via I-24 and I-65. The third study tracked 

westward trucks through Nashville via I-40 and around Nashville via I-840. The tracking distance was between 

50 and 250 miles. In general, the total matching percentage ranged from 14% to 48%. This is common and 

largely due to spatial and temporal leakages between stations far apart. 

17. Key Words 

 

ALPR, LICENSE PLATE TRACKING, FREIGHT 

TRACKING, AUTOMATED LICENSE PLATE 

RECOGNITION, TRUCK TRIPS 

 

18. Distribution Statement 

 

No restrictions. This document is available through the 

National Technical Information Service, Springfield, 

VA 22161; www.ntis.gov. 

19. Security Classif. (of this report) 

Unclassified 
20. Security Classif. (of this page) 

Unclassified 
21. No. of Pages 

71 
22. Price 

$83,024.16 

Form DOT F 1700.7 (8-72)  Reproduction of completed page authorized 



 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DISCLAIMER 

This research was funded through the State Planning and Research (SPR) Program 

by the Tennessee Department of Transportation and the Federal Highway 

Administration under RES #: 2016-32, Research Project Title: Automated Plate 
Recognition and Truck Trip Tracking 

This document is disseminated under the sponsorship of the Tennessee Department 

of Transportation and the United States Department of Transportation in the 

interest of information exchange. The State of Tennessee and the United States 
Government assume no liability of its contents or use thereof. 

The contents of this report reflect the views of the author(s) who are solely 

responsible for the facts and accuracy of the material presented. The contents do 

not necessarily reflect the official views of the Tennessee Department of 

Transportation or the United States Department of Transportation. 

  



 3 

 

CONTENTS 
List of Figures .................................................................................................................... 5 

List of Tables ...................................................................................................................... 6 

List of Acronyms ................................................................................................................ 7 

EXECUTIVE SUMMARY ..................................................................................................... 9 

CHAPTER 1 INTRODUCTION ..................................................................................... 10 

CHAPTER 2 TRUCK TRACKING TECHNOLOGY REVIEW ........................................ 12 

2.1 ALPR-based Technology ....................................................................................... 12 

2.2 Non-LPR based Technology .................................................................................. 13 

2.2.1 Dedicated Global Positioning System (GPS) ................................................. 14 

2.2.2 Bluetooth ......................................................................................................... 14 

2.3 Other Data Sources ................................................................................................ 15 

2.3.1 Mobile Probe Data .......................................................................................... 15 

2.3.2 Toll tag data ..................................................................................................... 15 

2.4 Established Difficulty with Long-Distance License Plate Matching .................. 16 

CHAPTER 3 FIELD DATA COLLECTION AND ANALYSIS ......................................... 18 

3.1 ALPR-Based Field Data Collection........................................................................ 18 

3.2 Case 1 – Northbound I-75 to I-75/I-81 ................................................................ 19 

3.2.1 Field Study Setup ............................................................................................ 19 

3.2.2 Field Data Assessment .................................................................................... 19 

3.2.3 Plate Matching Results ................................................................................... 20 

3.2.4 Data Analysis ................................................................................................... 21 

3.2.5 Findings ........................................................................................................... 21 

3.3 Case 2 – Northbound I-65/I-24 to I-24/I-65 ....................................................... 22 

3.3.1 Field Study Setup ............................................................................................ 22 

3.3.2 Data Assessment ............................................................................................. 23 

3.3.3 Plate Matching Results ................................................................................... 26 

3.3.4 Data Analysis ................................................................................................... 26 

3.3.5 Findings ........................................................................................................... 31 

3.4 Case 3 – I-40/840 to I-40 ...................................................................................... 31 

3.4.1 Field Study Setup ............................................................................................ 31 



 4 

3.4.2 Data Assessment ............................................................................................. 32 

3.4.3 Plate Matching Results ................................................................................... 33 

3.4.4 Data Analysis ................................................................................................... 33 

3.4.5 Findings ........................................................................................................... 34 

3.5 Summary ................................................................................................................ 36 

CHAPTER 4 WEIGH STATION DATA ANALYSIS ...................................................... 37 

4.1 Data Source and Data Assessment ....................................................................... 37 

4.2 Case 4 – Eastbound Trucks from Haywood EB to Coffee EB and Knox EB ....... 38 

4.2.1 Field Study Setup ............................................................................................ 38 

4.2.2 Data Assessment ............................................................................................. 38 

4.2.3 Plate Matching Results ................................................................................... 40 

4.2.4 Data Analysis ................................................................................................... 40 

4.2.5 Summary of Findings ...................................................................................... 43 

4.3 Thoughts ................................................................................................................. 43 

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS ......................................... 45 

ACKNOWLEDGMENTS .................................................................................................... 48 

REFERENCES ................................................................................................................... 49 

APPENDIX ........................................................................................................................ 50 

Appendix A. A Short Description of the License Plate Matching Algorithm ........... 51 

A.1 Association Matrix ............................................................................................. 52 

A.2 Edit Distance ...................................................................................................... 52 

A.3 Probability Method ............................................................................................ 52 

Appendix B. Field Study ALPR Equipment Setup ...................................................... 54 

Appendix C. Sample Weigh Station ALPR Data ......................................................... 57 

Appendix D. Sample ALPR Matching Results ............................................................ 59 

Appendix E. Literature Review of Truck Tracking.................................................... 60 

Appendix F. Scholarly Papers by UTK on LPR Matching Methodology ................... 67 

 

  



 5 

 

List of Figures 

Figure 2-1 Several portable ALPR devices in deployment in Tennessee ................... 12 

Figure 3-1 Map of locations of the three field studies .................................................. 18 

Figure 3-2 The location map of the first field study ..................................................... 19 

Figure 3-3 The location map of the second field study ................................................ 22 

Figure 3-4 Trucks captured per day of time at three Case 2A locations: I-65 South 

(top), I-65 North (middle) and I-24 West (bottom), on April 8, 2017. ....................... 24 

Figure 3-5 Trucks captured per day of time at three Case 2B locations: I-24 East 

(top), I-65 North (middle) and I-24 West (bottom), on April 9, 2017. ....................... 25 

Figure 3-6 Distribution of truck journey time for Case 2A .......................................... 27 

Figure 3-7 Mean journey time based on time at starting node for Case 2A ............... 28 

Figure 3-8 Number of matched trucks based on time at starting node for Case 2A.. 28 

Figure 3-9 Distribution of truck journey time for Case 2B .......................................... 29 

Figure 3-10 Mean journey time based on time at starting node for Case 2B ............. 30 

Figure 3-11 Number of matched trucks based on time at starting node for Case 2B 30 

Figure 3-12 Location map of the third field study ........................................................ 31 

Figure 3-13 Trucks captured based on time of day at I-40 West of Nashville (top), I-

840 West of Nashville (middle) and I-40 East of Nashville (bottom), on May 8, 2017.
........................................................................................................................................... 32 

Figure 3-14 Distribution of truck journey time for field Case 3 .................................. 34 

Figure 3-15 Mean journey time based on time at starting node for Case 3 ............... 35 

Figure 3-16 Number of matched trucks based on time at starting node for Case 3 .. 35 

Figure 4-1 Location and obtained number of license plates for each weigh station . 37 

Figure 4-2 Map of route case 4 ....................................................................................... 38 

Figure 4-3 The weekly pattern of license plates by the hour at Haywood EB weigh 

station ............................................................................................................................... 39 

Figure 4-4 The weekly pattern of license plates by the hour at Knox EB weigh station
........................................................................................................................................... 39 

Figure 4-5 The weekly pattern of license plates by the hour at Coffee EB weigh 

station ............................................................................................................................... 40 

Figure 4-6 Journey time distribution for all matched trucks from Haywood to Knox
........................................................................................................................................... 41 

Figure 4-7 Number of trucks matched from Haywood EB to Knox EB per time of day 

and associated mean journey time ................................................................................ 41 

Figure 4-8 Travel time distribution for all matched trucks from Haywood EB to 

Coffee EB .......................................................................................................................... 42 

Figure 4-9 Number of trucks matched from Haywood EB to Coffee EB based on time 

of day and associated mean travel time ........................................................................ 43 

 
  

file://///AG03SDCWF00007.net.ads.state.tn.us/Main/LR%20Planning/Admin%20Section/Research%20Project%20Files/RES2016/RES2016-32%20UTK%20FREIGHT-LRP%20and%20Truck%20Tracking%20UT/Progress%20Reports/Truck%20Tracking%20V4%2020210506.docx%23_Toc71789271
file://///AG03SDCWF00007.net.ads.state.tn.us/Main/LR%20Planning/Admin%20Section/Research%20Project%20Files/RES2016/RES2016-32%20UTK%20FREIGHT-LRP%20and%20Truck%20Tracking%20UT/Progress%20Reports/Truck%20Tracking%20V4%2020210506.docx%23_Toc71789271


 6 

 

List of Tables 

Table 3-1 License plate matching results of the first field study ...................................... 18 

Table 3-2 License plate matching results of the second field study ................................ 23 

Table 3-3 License plate matching results of the third field study ..................................... 30 

Table 4-1 License plate matching results of case 4 ................................................................ 36 

Table 4-2 License plate matching results of case 5 ................................................................ 42 
 

  



 7 

List of Acronyms 

AL Alabama 

ALPR Automated License Plate Recognition 

AM Ante Meridiem 

ATRI American Transportation Research Institute 

BTS Bureau of Transportation Statistics 

Co County 

DMS Dynamic Message Sign 

EB Eastbound 

FAF Freight Analysis Framework 

FHWA Federal Highway Administration 

FMCSA Federal Motor Carrier Safety Administration 

Fri Friday 

GA Georgia 

GPS Global Positioning System 

ID Identification 

KY Kentucky 

LPR License Plate Recognition 

MM Mile Marker 

Mon Monday 

mph Miles Per Hour  

NB Northbound 

OCR Optical Character Recognition 

OD Origin-Destination 

ORNL Oak Ridge National Laboratory 

PrePass  A weigh station bypass service for truckers and fleets 

PM Post Meridiem 

RFID Radio Frequency Identification 

Sat Saturday 

SB Southbound 

Sun Sunday 

TDOT Tennessee Department of Transportation 

TDSHS Tennessee Department of Safety and Homeland Security 

THP Tennessee Highway Patrol 

Thu Thursday 

TMC Traffic Management Center 

TN Tennessee 

TOD Time of Day 

Tue Tuesday 

UT University of Tennessee 

UTK University of Tennessee at Knoxville 

VA Virginia 



 8 

VMS Variable Message Sign 

WAZE A cellphone-based navigation app 

WB Westbound 

Wed Wednesday 
 

  



 9 

EXECUTIVE SUMMARY 

This study sought to apply automated license plate recognition (ALPR) technology 

to track trucks trips. ALPR does not work perfectly in the U.S. because of the 

thousands of different designs, colors, shapes, fonts, etc. of license plate from 

different states.  To overcome this, a class of machine learning algorithms were 

developed to help track trucks by matching license plates read, correctly or 

incorrectly, by ALPR devices.  While these unsupervised machine learning 

algorithms worked great for short distance (<10 miles) scenarios, they have never 

been tested for long distance scenarios, which was the main challenge of this study. 

Three sets of field studies were conducted at strategically selected Interstate sites in 

Tennessee using mobile ALPR stations.  The first study tracked trucks on I-75 from 

Georgia to Kentucky and to Virginia via I-81.  The second study tracked trucks from 

Georgia and Alabama to Kentucky via I-24 and I-65.  The third study tracked 

westward trucks through Nashville via I-40 and around Nashville via I-840.  The 

tracking distance was between 50 and 250 miles.  In general, the total matching 

percentage ranged from 14% to 48%.  This is common and largely due to spatial and 

temporal leakages between stations far apart. 

The key findings of the study suggest: 

• License plate data collected at weigh stations by Tennessee Department of Safety 

and Homeland Security (TDSHS) are free to Tennessee Department of 

Transportation (TDOT) and can be quite useful without additional 

infrastructural investments.  They could be used to establish travel patterns, trip 

frequency, travel time, stops, etc. between weigh stations. 

• Permanent installation of additional ALPR stations at strategic locations, such as 

state border crossing points, could be quite useful for tracking trucks. 

• The mobile ALPR units for research purposes in this study were limited in hours 

of operation and couldn’t track many of the trucks that travelled, at least 

partially, outside of the study periods.  The restrictive hours of operation, from 

sunrise to sunset, were implemented in the interest of student researchers’ 

safety and security in remote field locations near high-speed roadways.  A 

network of permanently installed ALPR stations could have helped with tracking 

a higher percentage of trucks. 
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CHAPTER 1 INTRODUCTION 

The objective of this study is to investigate freight mobility patterns at the 

state/metropolitan level in Tennessee, which could shed some light on the 

challenging effort towards calibrating the freight routing algorithm in Federal 

Highway Administration’s Freight Analysis Framework (FAF) at the national level. 

To that end, the Automated License Plate Recognition (ALPR) technology and the 

high accuracy plate-matching algorithms developed at the University of Tennessee, 
were used in this project.  

Freight mobility and commodity flow information is of increasing importance to 

transportation planning and management agencies. Only a small number of studies 

have investigated freight mobility patterns due to the lack of observed data on truck 

route choices, which are difficult to obtain via traditional travel surveys. 

Transportation planners often have to make assumptions on truck route choice 

behaviors that are hard to verify in the context of freight movement. Alternative 

means towards studying truck route choices, therefore, point to GPS tracking and 

license plate tracking technologies.  Of these, the GPS-based truck tracking method 

requires the instrumentation of individual trucks for active tracking.  It can be quite 

involved, intrusive, and expensive with limited representation of the truck 

population.  The license plate tracking requires only passive observation of existing 
identification means on every truck and is thus chosen for this study. 

To gain a better understanding of freight mobility patterns in the transportation 

network, including origin-destination (O-D) freight flows, and truck travel routes, 

two license plates datasets were used in this project: mobile ALPR data collected in 

situ by the study team and Tennessee Department of Safety and Homeland Security 

(TDSHS) weigh stations that routinely collect ALPR data.  Originally, the truck GPS 

data from the American Transportation Research Institute (ATRI) was requested, 

which would have provided the GPS location and time information of trucks through 

the State of Tennessee. This plan did not work out for reasons beyond the purview 

of this study.  The weigh station license plate data were subsequently requested 

from the Tennessee Highway Patrol (THP), which is under TDSHS. The field study 

license plate data were collected through three separate field visits with ALPR 
equipment at strategic locations along the primary trucking corridors in Tennessee.  

This study aims to have a better understanding of the freight mobility pattern on the 

Interstate highways of Tennessee, primarily through tracking truck license plates. 

As presented in this report, the license plate data collected in this study did shed 

some light on truck route choice and freight mobility patterns. When a wide area of 

deployment of the ALPR technology is realized and a large amount of weigh station 

data are obtained, various aspects related to freight movement, such as air quality, 
safety, and fuel efficiency, could be better assessed. 
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The remainder of this report is organized as follows. Chapter 2 presents a synopsis 

resultant from the literature review effort on trucking tracking technology. Chapter 

3 presents the field studies and empirical results.  In a similar fashion, the weigh 

station ALPR data and the analysis results are presented in Chapter 4. Lastly, 
Chapter 5 closes the report with conclusions and recommendations.  



 12 

CHAPTER 2 TRUCK TRACKING TECHNOLOGY REVIEW 

Trucks are just vehicles with much larger dimensions and different operational 

characteristics than average passenger cars.  To track trucks, or any vehicles for that 

matter, one could monitor the trajectory of the target vehicle if a signal were 

actively emitted from the vehicle with uniquely identifiable ID and location.  A less 

intrusive approach is to observe the target vehicle using identifiable means, such as 

a license plate, along the path of travel.  A general comparison of these approaches is 
presented in this chapter. 

2.1 ALPR-based Technology  

Automatic License Plate Recognition, or ALPR, technology was first deployed in 

1979 when the British Police Scientific Development Branch prototyped a system 

for trial deployment in Wokingham, UK. The ALPR technology can read the vehicle 

license plate with various algorithms, like optical character recognition (OCR) 

algorithm. LPR Technology primarily consists of six algorithms:  

1. Plate locating.  

2. Plate orientation and sizing.  

3. Normalization.  

4. Character segmentation.  

5. Optical character recognition (OCR), and  

6. Syntactical/geometrical analysis.  

During the past decade, ALPR technology saw wider real-time deployment as 

computer, communication and video technologies matured. The ALPR technology 

has been predominantly used in combating auto theft and law enforcement, but it 

also holds great potential in investigating freight mobility patterns since ALPR can 

collect and store the information of trucks, such as time, date, location and license 
plate information.  

ALPR technology has three kinds of 

formats: fixed systems that are 

installed at roadside or strategic 

locations, mobility systems that are 

installed on police cars or other 

vehicles, and portable systems that can 

be deployed at selected locations. The 

portable LPR units have the capability 

to be deployed quickly for short-term 

study and special event data collection 

purposes. The downside of such 

systems include 1) the potential lack 

of reliable power source in the field, 2) 

the safety of the operation personnel, 3) the security of the unit out in the field, 4) 

Figure 2-1 Several portable ALPR 
devices in deployment in Tennessee 
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the network communication means for data transmission, 5) the need to recalibrate 

the unit for each use and installation, and 6) the extensive training needs for the 

operation personnel when large scale study requires multi-site and multi-unit 

deployment.  

Vendors of various ALPR systems often make claims of an over-95% accuracy of 

their LPR device.  While this could be true in the controlled lab environment on 

license plates from states the LPR units are pre-calibrated for, the actual field results 

can be much lower when hundreds of different plate designs are encountered by the 

LPR units.  In the previous studies by Han et al, brand new uncalibrated units could 

have accuracy as low as 30%-60%.  The manufacturers tend to attribute the lower 

than claimed accuracy to the following factors: 

• Motion blur and camera vibration,  

• Poor lighting and visibility,  

• Bent, damaged, dirty, and modified plates,  

• Lack of unified fonts and colors,  

• Reflectivity of plates and paints, and  

• Plate designs “unfriendly” to LPR. 

License plate reading accuracy, however, is not the whole story on vehicle tracking.  

Even with less than desirable individual plate reading accuracy, an artificial 

intelligence based self-learning algorithm developed by Han et al. (Oliveira-Neto, 

Han, & Jeong 2013) could “learn” to match license plates read, even if incorrectly, at 

multiple locations. Basically, the tracking process consists of collecting vehicle 

license plate numbers and arrival times at various checkpoints, matching the license 

plates between consecutive checkpoints, and computing travel times from the 

difference in arrival times (Oliveira-Neto, Han, & Jeong, 2013; Turner, Eisele, Benz, & 

Holdener, 1998; Wagner & Fischer, 1974). Further details are presented in 

Appendix A. The algorithms have previously achieved high matching accuracies in 
the range of 97%, for distances of up to 10 miles and were used in this project.  

Since all vehicles are legally required to have license plates installed and displayed, 

no additional onboard technology, new identification devices, or user consent are 
required.  The ALPR approach here is a passive and non-intrusive system. 

2.2 Non-LPR based Technology 

Unlike the passive system, one could actively track vehicles/persons using GPS, cell 

triangulation, and Bluetooth if a cellular unit is on the vehicle. Even technology like 

RFID could be used to track vehicles.  These, however, are intrusive, in that some 

sort of owner consent or device deployment is needed, and they do not cover the 

entire population of vehicles.   
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2.2.1 Dedicated Global Positioning System (GPS) 

GPS technology is widely implemented to identify vehicle position information 

(latitude and longitude, time). The GPS device can locate the object at any time with 

reasonably high accuracy via satellite trilateration. GPS technology is mature and 

proven to be effective. While for mobile phones the accuracy of GPS is in the range of 

5-8 meters.  Dedicated GPS units can be accurate to 3 meters or less than 10ft.  

Although, there are several limitations associated with GPS technology: 

• GPS could lose signals at places like dense forest, canyon walls, skyscrapers, 

and bridges, 

• GPS could lose signals under heavy cloud, rain, and other inclement weather 

conditions, 

• GPS may not work well in indoor and underground spaces, and 

• GPS may have coverage gaps due to satellite maintenance, radio interference, 

and solar storms. 

American Transportation Research Institute (ATRI) has been collecting the truck 

GPS data of key national corridors since 2002, and, according to ATRI, billions of 

truck GPS traces in North America are obtained annually. This data can provide 

insights into understanding freight activity and freight mobility for public agencies 

at both the federal and regional level. For this project, the truck GPS data from ATRI 

was requested, but not available.   

2.2.2 Bluetooth 

Bluetooth devices are commonly embedded in mobile phones, in-vehicle navigation 

systems, and increasingly in other wireless peripherals, such as headphones and 

smart watches, for the purpose of secure short-range data communication. The 

Bluetooth device can broadcast a unique hardware ID when enabled and can be 

detected and uniquely identified, hence tracked, by roadside monitoring sensors. 

Thus, Bluetooth data can be obtained via an in-vehicle Bluetooth device while 

maintaining user anonymity. The data can be used in tracking vehicles since it 

provides the location and time information of the vehicle. 

A major problem with Bluetooth data is that the adequate sample size is not always 

guaranteed since Bluetooth devices need to be enabled to be detected. In addition, 

Bluetooth has a lower geolocation accuracy (~75 feet) in comparison with that of 

GPS (~10 feet).  In a low-density roadway system, like those in rural areas, one 

might be able to perform some map-matching post-processing to fix minor 

geolocation errors.  In the dense roadway network common in urban areas, this 

would be more challenging as a Bluetooth device (and the vehicle carrying it) could 

be geolocated at a nearby, but erroneous, location due to the lower accuracy of the 
technology and the complexity of the environment. 
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2.3 Other Data Sources 

Several other data sources are also commonly implemented to track trucks, 

including mobile probe data, and toll tag data. 

2.3.1 Mobile Probe Data  

Mobile probe data is increasingly used in real-time traffic monitoring. Cell phones 

can be considered as probes to collect mobile probe data. The data contains 

information, such as vehicle location and time, which can be used to obtain vehicle 

speed and travel time.   

The mobile probe data gains its popularity due to its cost-effectiveness, real-time 

capabilities, and relative accuracy. But some issues are associated with the mobile 

probe data, like 

• Mobile probe data may not have a large enough sample size in sparsely 

populated areas, or in off-peak times, 

• Mobile probe data, such as GPS, has inherent errors under inclement 

atmospheric or weather conditions, and 

• Mobile probe data has privacy concerns. 

It should be noted that cell phone GPS/location data are different from those from 

dedicated GPS units install on some of the truck fleets and on some of the American-

made passenger vehicles specifically for vehicle tracking purposes.  While dedicated 

GPS units are tracked at all times, typically with high temporal resolution, cell phone 

GPS tracking can only be accessed anonymously or through subscription/consent. 

2.3.2 Toll tag data  

Toll tags data have been considered as an important alternative data source to 

determine travel times along the roadway. The toll tag data is especially useful in an 

area with a large number of toll roads, like Florida. The toll tag data can be used to 

determining traffic speed, travel time and O-D matrices, through matching the toll 

tags over a known distance.  

The toll tags data holds potential in tracking vehicles, but it has a primary issue, 

namely, the availability of accurately recognized toll tags. It can be partly attributed 

to the following reasons:  

• The coverage of toll tag readers is limited 

• Not all vehicles have toll tags 

• Toll tags can be read duplicate times, or misread 

Since tolls and, hence, toll tags are not common in Tennessee and surrounding 
states, the technology was not considered for this study. 
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2.4 Established Difficulty with Long-Distance License Plate Matching 

License plate matching is easy if the license plate is read correctly.  This, however, is 

not the case in the real-world, especially for the U.S., where thousands of different 

designs, colors, dimensions, fonts, and reflective materials are used in different 

states.  When a license plate is misread at an ALPR location, even if only by one or 

two characters, it becomes very difficult to match and, hence, track the plate at 

another location.  As mentioned in Section 2.1, Dr. Han’s research group at the 

University of Tennessee published a series of primary literatures on how to 

overcome this problem with text-mining and machine-learning techniques 

(Oliviera-Neto, et al. 2012, 2013)  Their success, primarily limited to short-distance 

(< 10 miles), demonstrated an algorithm successfully learned to match plates at two 

different locations several miles apart.  The correct matching rate was reported in 

the range of over 97% with a false positive rate of less than 1%.  While this is very 
promising, plate matching for longer distance is much harder. 

A major challenge is in the way the algorithm learns.  Unlike supervised learning 

where a person, a dog, or a computer is told by an outside agent, a teacher perhaps, 

whether a response was correct or otherwise, unsupervised learning does not have 

a teacher.  The algorithm must use some basic rules to figure out for itself if a match 

is correct or not.  This is the essence of Dr. Han’s matching algorithm.  By using some 

text-mining techniques and calculating the probably of matches, Dr. Han’s algorithm 

deduces and continually updates the likelihood two plates are a match.  This 

learning process requires many pairs of readings, correct or not, from the same 

plate at two different ALPR stations.  It works well with short-distance tracking 

scenarios where each plate is read at both locations, which automatically creates 

many training samples.  It becomes more difficult for longer distance scenarios 

where insufficient training samples may result, preventing the algorithm from 

learning efficiently. 

Another issue with long distance matching is the simple fact that a significant 

number of trucks that happened to pass one station would not pass the other station 

hundreds of miles away because of the wide ranges of possible origins, destinations, 

and route choices.  For two ALPR stations a short distance apart, say 5 miles, on a 

straight stretch of Interstate, it is highly likely a truck would be captured at both 

stations within a few minutes.  But when that distance is extended to 50 miles with 

some stops and crossroads in between, the likelihood the same truck would be 

captured at both stations declines and requires a longer “time window” to allow for 

the variability in travel time.  The bigger the time window, the more plates need to 

be compared to make sure the potential correct match is not omitted inadvertently.  

At 5 miles apart, the algorithm may only need a time window of a few minutes while 

at 50 miles apart, the algorithm will need a time window of hours.  When that 

distance is extended to 250 miles with many Interstate junctions and even more 

potential stops in between, the likelihood a truck would pass though the two 
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stations within a few hours drops down severely and the time window is measured 

in days. 
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CHAPTER 3  FIELD DATA COLLECTION AND ANALYSIS 

3.1 ALPR-Based Field Data Collection  

Three field studies were conducted in October 2016, April 2017, and May 2017 to 

collect truck travel data along selected portions of the State’s Interstate highways. 

These activities are shown in Figure 3-1 and listed below. 

• Field Study 1 – Northbound trucks in all lanes at TN/GA border on I-75 were 

tracked to TN/VA border on I-81 near Bristol and to TN/KY border on I-75. 

This was conducted on October 22, 2016. 

• Field Study 2A – Northbound trucks in all lanes north of TN/GA border on I-

24 were tracked to TN/KY border near Clarksville on I-24 and to TN/KY 

border on I-65. This was conducted on April 8, 2017. 

• Field Study 2B – Northbound trucks in all lanes north of TN/AL border on I-

65 were tracked to TN/KY border near Clarksville on I-24 and to TN/KY 

border on I-65. This was conducted on April 9, 2017. 

• Field Study 3 – Westbound trucks on I-40 west of I-40/I-840 split on the west 

side of Nashville were tracked to the east side of Nashville on I-40 and I-840 
right before the two roads merge again. This was conducted on May 8, 2017. 

 

 

Figure 3-1 Map of locations of the three field studies 

The remainder of this chapter will present the details of each of these studies and 
the analysis results of the data from these studies. 
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3.2 Case 1 – Northbound I-75 to I-75/I-81 

3.2.1 Field Study Setup 

The first field study was conducted on October 22, 2016, tracking the northbound 

trucks in all lanes from TN/GA border on I-75 to TN/VA border on I-81 near Bristol 

and to TN/KY border on I-75 (Figure 3-2). The distance from TN/GA border on I-75 

to I-81 near Bristol is about 223 miles, and the distance from TN/GA border on I-75 

to TN/KY border on I-75 is about 167 miles.  These distance figures are important 

for the estimation of the “time window” when the tracked truck may arrive at the 

destination based on the average operational speed of the trucks. 

The LPR devices were set up by a group of well-trained University of Tennessee -

Knoxville (UTK) graduate and undergraduate students at strategic locations, shown 

in Figure 3-2.  Three groups set up the LPR devices at the three locations from 5 AM 
to 7 PM.   

 

Figure 3-2 The location map of the first field study 

 

3.2.2 Field Data Assessment 

Images of trucks at the above three locations were captured with ALPR devices, and 

then the license plates of trucks were extracted with the ALPR software. A total of 

657; 1,662; and 1,026 license plates were collected at TN/GA border on I-75, at I-81 

near Bristol, and at TN/KY border on I-75, respectively. The obvious lower number 

of 657 at the Chattanooga station near TN/GA border was due to an unfortunate 

incident where a student accidentally “fried” one of the ALPR units deployed at that 

locations together with the data after the field visit.  The incident would not have 

occurred for permanently mounted ALPR units.  Mobile ALPR units that are 

transported, assembled, set up and calibrated on site, are then disassembled, and 



 20 

transported back to our lab after each field study, which made them subject to many 

potential hazards in that process.  They could have been dropped by accident, hit by 

lightning in rain, experienced a power outage in the field, or gotten damaged in 

transport, etc.  The incident was due to reversing the polarity of a cable when trying 

to download the data.  In a previous field study for FMCSA, we used permanently 

mounted ALPR units where all data were automatically transmitted via cellular 

network, which eliminated a lot of such hazards.  But for research work with 

temporary setups, mishaps do occur.  This incident further underscores the 
challenge for portable ALPR deployment for research/study purposes.   

3.2.3 Plate Matching Results 

After running the license plate matching algorithm, the results, shown in Table 3-1, 

suggest 10.4% of the trucks went through I-75 North and 3.7% went through I-81 

East.  This may indicate that for all the northbound trucks from I -75 South, about 

three-fourths stayed on I-75 while one-fourth switched to I-81.  While there is 

certain “leakage” of trucks not tracked, perhaps due to the established difficulty of 

long-distance license plate matching, one might assume this I-75/I-81 truck split 

ratio holds true for freight mobility/pattern purposes.  However, these matches only 

reflect same-day day-time trips.  Early morning trips that passed the starting node 

before 5 AM or crossed the ending nodes after 7 PM would not be matched here. 

Table 3-1 License plate matching results of the first field study 

October 
22nd 

Truck 
Path 

Distance 
(miles) 

# of 
Matches 

Starting 
Node 

Ending 
Node 

Matching 
Percentage 

I-75 → I-
75 

167 68 657 1,026 10.4% 

I-75 → I-
81 

223 24 657 1,662 3.7% 

 

The low matching percentages of trucks in this study can be attributed to several 

reasons.  First, the self-learning algorithm depends on many samples (a high 

number of trucks traversing both the starting and the ending ALPR stations) to learn 

efficiently.  It worked well with short-distance tracking scenarios but did not have 

enough training samples under long distance tracking scenarios to be proficiently 

trained.   

Second, the field studies were performed only from sunrise to sunset for most cases, 

in the interest of the safety/security of the researchers in the field after dark.  With 

hundreds of miles to travel for the subject trucks, only a portion of them were able 

to complete the journey and be tracked at both the start and the end stations.  Many 

of the trucks may have stopped along the way for a variety of reasons including, for 

example, refueling, resting, pick-up/drop-off, and so on, which can lead to much 

longer journey times.  The longer the journey time, the less likely the trip could be 
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captured within our field study time window.  The simple fact that a significant 

number of trucks that happened to pass one station would not pass the other station 

hundreds of miles away because of the wide ranges of origins, destinations, and 

route choices. 

Finally, for two ALPR stations a short distance apart, say 5 miles, on a straight 

stretch of Interstate, it is highly likely a truck would be captured at both stations 

within a few minutes.  But when that distance is extended to 50 miles with some 

stops and crossroads in between, the likelihood the same truck would be captured 

at both stations declines quickly and requires a longer “time window” to allow for 

the variability in travel time.  When that distance is extended to 250 miles with 

many Interstate junctions and even more potential stops in between, the likelihood 

a truck would pass though the two stations within a few hours drops down to single 

digits. 

3.2.4 Data Analysis  

Since the matched results are relatively small, the implications of these results may 

be limited. The mean travel time from I-75 South to I-75 North is 2 hours and 36 

minutes (156 minutes), and the mean travel time from I-75 South to I-81 East is 

about 3 hours and 12 minutes (292 minutes). This leads to an average journey 

speeds of 64 mph for Georgia-Tennessee-Kentucky trucks and 46 mph for Georgia-

Tennessee-Virginia trucks.  It is reasonable to speculate that the Virginia-bound 

trucks likely took a break, perhaps in the Knoxville area, had some delay at a weigh 

station, or had to stop due to company policies or Federal Motor Carrier Safety 

Administration (FMCSA) hours of service guidelines (FHCSA 2015).  In hindsight, 

another set of ALPR stations along I-40 west of the I-40/I-75 split would have been 

helpful to provide more insights.  However, this was not possible at the time due to 

the fact the research team had only six ALPR units. 

3.2.5 Findings  

This first field study investigated the truck travel patterns from TN/GA border on I-

75 to TN/VA border on I-81 near Bristol and to TN/KY border on I-75. The results 

showed that for all the northbound trucks from I -75 South, about three-fourths 

stayed on I-75 while one-fourth switched to I-81.   

The first field study was conducted as an initial pilot to also work out the kinks in 

the data collection process.  The number of matched vehicles were only 14.1% of the 

traffic, which was somewhat disappointing.  Given that we did lose about a half of 

the data at the starting node due to the aforementioned manual error during the 

data downloading process, better matching results could have resulted.  Due to the 

challenges of short field study window (from sunrise to sunset) and the lack of 

enough of matches, the heuristic learning algorithm was not implemented.  All 

matches reported herein are, thus, with all characters correctly matched. 

https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/files/docs/Drivers%20Guide%20to%20HOS%202015_508.pdf
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Compared to the aggregated statistics in Freight Analysis Framework (FAF) 2012 

long-haul truck traffic on major US Interstate corridors (BTS 2017), the general 

volume of trucks for I-75 and I-81, at the destination nodes, appear to be reasonable.  

Since I-81 tends to have more trucks than I-75, to reconcile the 1-to-3 ratio of trucks 

going from Chattanooga to I-81 vs I-75, a significant amount of truck volume on I-81 

must have come from I-40, at least for the day-time traffic. 

An interesting research question did rise about the approximately 75-25 split 

(10.3% vs 3.1%) on I-75 vs I-81.  The I-81 route is 33% longer than the I-71 route.  

If there are equal amounts of “leakage,” or trucks exiting before the end node or not 

finishing within the same time window, per mile, the I-81 route could have lost an 

extra 33% of trucks going in that direction.  One could take this into consideration 

and adjust the split accordingly.  The validity of this consideration will have to wait 

for further studies. 

 

3.3 Case 2 – Northbound I-65/I-24 to I-24/I-65 

3.3.1 Field Study Setup 

For the second field data collection effort, two separate configurations were used on 

April 8, 2017 and April 9, 2017. Case 2A was conducted on April 8, 2017 tracking 

northbound trucks in all northbound lanes from the TN/AL border on I-65 to TN/KY 

border near Clarksville on I-24 and to TN/KY border on I-65.  On the next day, Case 

2B was conducted tracking northbound trucks in all northbound lanes from the 

TN/GA border on I-24 to TN/KY border near Clarksville on I-24 and to TN/KY 

border on I-65 (Figure 3-3). 

 

Figure 3-3 The location map of the second field study 

https://www.bts.dot.gov/sites/bts.dot.gov/files/docs/FFF_2017_Full_June2018revision.pdf
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For Case 2A, the distance from the TN/AL border on I-65 to TN/KY border near 

Clarksville on I-24 is about 85.7 miles, and the distance from the TN/AL border on I-
65 to TN/KY border on I-65 is about 89.5 miles. 

For Case 2B, the distance from the TN/GA border on I-24 to TN/KY border near 

Clarksville on I-24 is about 136 miles, and the distance from the TN/GA border on I-
65 to TN/KY border on I-65 is about 141 miles. 

The ALPR devices were deployed at three locations each day from 6 AM to 6 PM.  

The field study team was limited to three locations because of the number of ALPR 
units available. 

3.3.2 Data Assessment 

For Case 2A, the ALPR units collected 1,290, 1,588, and 1,214 license plates at the I-

65 South, I-65 North, and I-24 West locations, respectively. Figure 3-4 shows the 

trucks captured by ALPR at these locations per time of day. 

Similarly, for Case 2B, the ALPR units collected 1,293, 2,886, and 1,841 license plates 

at the I-24 East, I-65 North and I-24 West locations, respectively. Figure 3-5 shows 

the trucks captured by ALPR at these locations per time of day. Both sets of data 

showed similar patterns with more trucks during peak hours and slightly less 
during the middle of the day, as expected.  
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Figure 3-4 Trucks captured per day of time at three Case 2A locations: I-65 South 
(top), I-65 North (middle) and I-24 West (bottom), on April 8, 2017. 
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Figure 3-5 Trucks captured per day of time at three Case 2B locations: I-24 East 
(top), I-65 North (middle) and I-24 West (bottom), on April 9, 2017.  
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3.3.3 Plate Matching Results 

For Case 2A, which starts on I-65 near the TN/AL border, we found 24.4% of the 

truck license plates were matched at I-65 North and 23.5 were matched at I-24 

West, see Table 3-2.  This may indicate that the northbound trucks from I-65 South 

are evenly split to I-65 North and I-24 West. 

For Case 2B, which starts on I-24 near the TN/GA border, we found 12.2% and 

27.4% of the truck plates were matched at I-65 North and I-24 West, respectively. 

Thus, for all the northbound trucks from I-24, about two-third stayed on I-24 while 

one-third switched to I-65. 

Table 3-2 License plate matching results of the second field study 

April 
8th 

Case 
2A 

Truck 
Path 

Distance 
(miles) 

# of 
Matches 

Starting 
Node 

Ending 
Node 

Matching 
Percentage 

I-65 → I-65 89.5 315 1,290 1,588 24.4% 
I-65 → I-24 85.7 303 1,290 1,214 23.5%       

 
April 

9th 
Case 
2B 

Truck 
Path 

Distance 
(miles) 

#of 
Matches 

Starting 
Node 

Ending 
Node 

Matching 
Percentage 

I-24 → I-65 141 158 1,293 2,886 12.2% 
I-24 → I-24 136 354 1,293 1,841 27.4% 

 

Again, Section 3.2.3 explains some of the factors affecting the matching percentage 

values.  The shorter distances in this second field study likely contributed to the 

decidedly higher matching percentages than those in the first study. 

3.3.4 Data Analysis  

For Case 2A, the license plate matching results showed that the mean journey time 

from I-65 South to I-65 North is about 2 hours 42 minutes (162 minutes) with an 

average journey speed of 33 mph and the mean journey time from I-65 South to I-24 

West is about 3 hours and 20 minutes (200 minutes) with an average journey speed 

of 26 mph.  The journey speed figures on both truck paths are significantly lower 

than the speed limit and the typical average travel time for passenger cars for a 

mere 90-mile distance.  While some of the trucks did travel through the corridor 

without stopping, with an average travel time of just under an hour, it appears that a 

significant portion of the trucks must have stopped for whatever reasons in the 

vicinity of Nashville, for as long as half a day, before continuing on the same route.  It 

should be noted that the extra time, in hours, that took these trucks to traverse the 
corridor were not resultant from local traffic congestions but stops. 

Figure 3-6 shows the distribution of individual truck journey time from I-65 South 

to I-65 North and to I-24 West for Case 2A.  We can observe that both routes show a 

similar pattern with a long tail, many occurrences tapering away far from the 
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central portion of the distribution, which is consistent with the typical long-tailed 

journey time distribution.  Figures 3-7 and 3-8 show the mean truck journey time 

based on time of day and the number of matched trucks, respectively, at the TN/AL 

location (the starting node). Figure 3-7 may, at a first glance, suggest trucks passing 

the first station in the morning are more likely to have a longer journey time.  The 

reality though is that’s the artifact of a decreasing number of trucks captured at both 

stations as time goes on.  This effect becomes pronounced when truck journey times 

are comparable or, for some cases, longer than the remaining data collection time at 

the second station.  While all trucks with short journey time, e.g., an hour, can be 

captured at both stations for most of the day, only the early trucks can be captured 

at the second station if they had very long journey time.  Since the time window for 

capturing a truck again at the second station continues to shrink as time goes on, the 

portion of trucks with longer journey time would not make it during the study time 

window would continue to shrink also.  This eventually led to a reduce number of 
trucks captured and reduced average journey time throughout the day. 

 

Figure 3-6 Distribution of truck journey time for Case 2A 
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Figure 3-7 Mean journey time based on time at starting node for Case 2A 

 

Figure 3-8 Number of matched trucks based on time at starting node for Case 2A 

 

For Case 2B, the license plate matching results showed that the mean journey time 

from I-24 East to I-65 North is about 5 hours 12 minutes (312 minutes) with an 
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average journey speed of 27 mph and the mean journey time from I-24 East to I-24 

West is about 3 hours and 4 minutes (184 minutes) with a slightly more reasonable 

average journey speed of 44 mph. Figure 3-9 shows the distribution of travel time 

for I-24 East to I-65 North I-24 West. We can observe that the two directions 

showed different patterns. Few of the trucks staying on I-24 all the way through 

stopped and took longer time than needed. But a much larger portion of trucks 
switching over to I-65 stopped along the way. 

Figures 3-10 and 3-11 show the mean truck journey time per hour of the day and 

the number of matched trucks passing the TN/GA border station each hour of the 

day for Case 2B. From Figure 3-10, for the direction from I-24E to I-65N, the mean 

journey time continuously and steadily declined, while for the direction from I-24E 

to I-24W, the mean travel time also declined steadily but of a much less magnitude 

throughout the study duration. Also, more trucks are captured in the morning for 

direction from I-24E to I-65N, whilst for direction I-24E to I-24W, more trucks are 

captured in the early afternoon. 

 

 

Figure 3-9 Distribution of truck journey time for Case 2B 

 



 30 

 

Figure 3-10 Mean journey time based on time at starting node for Case 2B 

 

Figure 3-11 Number of matched trucks based on time at starting node for Case 2B 
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3.3.5 Findings  

Two data collection outings with different configurations were conducted for the 

second field task, tracking northbound trucks in all lanes on I-65 South/I-24 East to 

I-65 North and I-24 West. Overall, the ALPR matching rates were good, maxing out 

at about 25%.  

The results for the field Case 2A show that the northbound trucks from I-65 South 

are evenly split onto I-65 North and I-24 West. For both directions, more trucks are 

captured in the morning and tend to have a long journey time, which would be due 

to stops in the middle of the long day.  

For field Case 2B, the matching/tracking results show that for all northbound trucks 

on I-24 from Georgia through Nashville and to Kentucky, about two-third stayed on 

I-24 while one-third switched to I-65.   

3.4 Case 3 – I-40/840 to I-40 

3.4.1 Field Study Setup 

The third field study was conducted on May 8, 2017, tracking Eastbound trucks 

from the west side of Nashville on I-40E and I-840E to the east side of the city after 

the two roads merge, see Figure 3-12. The distance of the path along I-40E is about 

59.3 miles and the distance of the path along I-840 is 77.28 miles. This study 
attempts to understand the truck route choice when two routes are presented. 

 

Figure 3-12 Location map of the third field study 

The ALPR devices were set up by well-trained graduate and undergraduate students 

at the University of Tennessee.  Three groups of students set up the ALPR devices at 

the three strategic locations covering the two ends of each truck path from 6AM to 
6PM.   
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It should be mentioned that during the study, we also collaborated with TDOT’s 

Region 3 Traffic Management Center (TMC), which put out messages on the 

Dynamic Message Signs (DMS) to encourage trucks take I-840 to avoid congestion 

during peak hours. 

3.4.2 Data Assessment 

Again, the field data collection effort yielded 2,089; 568; and 2,298 truck license 

plates at I-40E west of Nashville, I-840 west of Nashville, and I-40E east of Nashville, 

respectively. Figure 3-13 shows the trucks captured by ALPR at three locations 

based on time of day for Case 3. From the figure, constantly high truck volumes were 

observed from 9 AM to 6 PM on I-40E on both ends of Nashville. whileI-840E carries 

a relatively lower truck volume.  

;  

Figure 3-13 Trucks captured based on time of day at I-40 West of Nashville (top), I-
840 West of Nashville (middle) and I-40 East of Nashville (bottom), on May 8, 2017. 
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3.4.3 Plate Matching Results 

After running the license plate matching algorithm, the results are tabulated in 

Table 3-3. Some 602 out of 2,298 (26.2%) license plates were from I-40E west of 

Nashville while 287 out of 2,298 (12.5%) were from I-840. Thus, for eastbound 

trucks on I-40 E, about two-third passed through the city via I-40E while one-third 
used I-840E. 

Table 3-3 License plate matching results of the third field study 

May 
8th 

Truck 
Path 

Distance 
(miles) 

# of 
Matches 

Starting 
Node 

Ending 
Node 

Matching 
Percentage 

I-40E → I-
40E 

59.3 602 2,089 2,298 26.2% 

I-840 → I-
40E 

78.5 287 568 2,298 12.5% 

3.4.4 Data Analysis  

For field Case 3, the license plate matching results showed that the mean journey 

time along I-40E was about 3 hours 16 minutes (196 minutes) with an average 

journey speed of 18 mph, and the mean journey time on I-840 is about 2 hours and 

48 minutes (168 minutes) with an average journey speed of about 28 mph.  Similar 

to the discussion in 3.3.4, the shrinking time window for capturing the eastbound 

trucks on I-40 or I-840 underestimated the average journey time on both routes.  

The journey times for trucks making no stops through these routes were short, 

around an hour, and well represented in the collected data.  But the journey times of 

trucks making long stops or taking long detours then resuming the trip east, either 

on I-40 or I-840, were not all captured and decreasingly so as time went on during 

the study.  Figure 3-14 shows the distribution of journey time on I-40 and on I-840.  

We observe that both directions showed similar patterns with a long tail, a slowly 

declining number of occurrences away from the main part of the distribution, which 

is consistent with the typical journey time distribution on the road. 
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Figure 3-14 Distribution of truck journey time for field Case 3 

 

Figures 3-15 and 3-16 show the mean truck journey time per time of the day and 

number of trucks captured each hour of the day for Case 3, respectively. From 

Figure 3-15, we can observe that, for both routes (I-40E and I-840E), trucks are 

more likely to have a longer journey time in the morning.  A plausible explanation is 

while all trucks with short journey time can be captured throughout most of the day, 

only the earlier trucks can be captured at the ending node if they had very long 

journey time, due to stops or detours.  Since the time window for capturing a truck 

again at the second station continues to shrink as time goes on, the portion of trucks 

with longer journey time would not make it to the east side of Nashville during the 

study time window would continue to shrink also.  This eventually led to a reduced 

number of trucks captured and a declining average journey time throughout the 
day. 

3.4.5 Findings  

Case 3 attempted to understand the truck route choice when two alternate routes 

were present. The ALPR matching algorithm was performed, and the matching rates 

are within the acceptable range, as high as 26%.  

The results for Case 3 indicate about two-thirds of truck drivers opted for I-40 

through Nashville while the other one-third opted for an 18-mile longer but less 

congested route bypassing Nashville. The mean journey time on I-840 is almost half 

an hour shorter than that on I-40.  This could have something to do with the nature 

of the type and length of stop made on each route. 
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Figure 3-15 Mean journey time based on time at starting node for Case 3 

 

Figure 3-16 Number of matched trucks based on time at starting node for Case 3 
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3.5 Summary 

This chapter consists of three field case studies performed by UTK research team.  

The cases were conducted for evaluating the LPR matching algorithm in long-

distance scenarios which is challenging for vehicle tracking and unsupervised 

learning algorithms. For each study, three locations were chosen as starting node or 

ending node; then ALPR devices were deployed to capture truck license plates at 

these locations. Truck license plates captured at the starting node and ending node 

were matched using ALPR matching algorithm developed by the UTK research team. 

Truck travel patterns and route choices were observed.  

The results demonstrated the potential of using ALPR matching algorithm in long-

distance truck tracking scenarios. For the first case, the results showed that for all 

the northbound trucks from I-75 South, about three-quarters stayed on I-75 while 

one-quarter switched to I-81. For the second case, the results Case 2A show that 

northbound trucks from Alabama (I-65N) were evenly split onto I-65N and I-24 

West trough Tennessee. Case 2B, in the meantime, showed that northbound trucks 

on I-24 from Georgia through Nashville and to Kentucky split with about two-thirds 

staying on I-24 while one-third headed to I-65N. For the third filed study, the results 
showed that about two-thirds stayed on I-40E while one-third opted for I-840E. 
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CHAPTER 4  WEIGH STATION DATA ANALYSIS 

4.1 Data Source and Data Assessment  

The team was eventually provided some ALPR data at a selected number of weigh 

stations by Tennessee Department of Safety and Homeland Security (TDSHS). The 

data was from a period of about three months (November 2016 to February 2017) 

with license plates strings, but no images, collected at nine Tennessee weigh 

stations, including: 

• Coffee Co Manchester I-24E and I-24W @ MM:115 

• Giles Co I-65N @ MM:5 

• Greene Co I-81S @ MM:21* 

• Haywood Co I-40E and I-40W @ MM:50 

• Knox Co I-40W* 

• Knox Co I-40E 

• Unicoi Co I-26W 

* Two stations had no data for the 3-month study period but will have data and can be used for 

future studies 

A total of 1,071,295 license plates captured at these stations were obtained in the 

TDSHS database.  Unfortunately, there were no entries for Knox I-40W or Greene I-

81S. Figure 4-1 illustrates the locations of the weigh stations and the number plates 
captured at these stations. 

 

Figure 4-1 Location and obtained number of license plates for each weigh station 

Given the available data, we chose to track eastbound (EB) trucks from Haywood EB 

to Coffee EB and Knox EB to explore truck travel patterns with the LPR matching 

algorithms developed by Dr. Han’s research team. 
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4.2 Case 4 – Eastbound Trucks from Haywood EB to Coffee EB and Knox EB 

4.2.1 Field Study Setup 

In Case 4, the Eastbound trucks from Haywood EB weigh station were tracked to 

Coffee EB weigh station and Knox EB weigh station (Figure 4-1).  The distance from 

Haywood EB to Coffee EB is about 229 miles, and the distance from Haywood EB to 
Knox EB is about 322 miles. 

 

Figure 4-2 Map of route case 4 

4.2.2 Data Assessment 

We obtained 134,319; 215,896; and 268,361 license plates for Haywood EB, Knox 

EB, and Coffee EB, respectively. The distribution of the number of license plates 

captured by the time of the day at these three weigh stations are shown in Figures 
4-3 through 4-5. A few notable points: 

• For Haywood EB, most of the trucks arrive after noon.  While the station was 

capable of operating 24/7, it is unclear if there were equipment failures or 

closures due to other reasons during the study period.  

• For Knox EB, the pattern for weekdays is significantly different from that for 

weekends. Most of the trucks arrive in the afternoon and evening on 

weekdays. On Saturdays, more trucks arrive in the early morning.  Still more 

trucks arrive in the afternoon (around 6 PM) on Sundays. 

• For Coffee EB, it seems that the pattern is constant for each day of the week. 

More trucks arrive at the weigh station during the PM peak. 

• All these weigh stations are designed to function 24/7, but closures due to 

various reasons could have occurred.  Also, trucks equipped with PrePass 

transponder can bypass the weigh stations and would not be captured if they 

did so. 
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Figure 4-3 The weekly pattern of license plates by the hour at Haywood EB weigh 
station 

 

 

Figure 4-4 The weekly pattern of license plates by the hour at Knox EB weigh station 
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Figure 4-5 The weekly pattern of license plates by the hour at Coffee EB weigh 
station 

4.2.3 Plate Matching Results 

Truck plates captured from Haywood EB to Knox EB or to Coffee EB were matched 

up with the ALPR matching algorithm. Results show 13.2% of Haywood EB trucks 

trekked their ways to Knox EB while only 4.0% from Haywood EB went to Coffee 

EB.  Considering more than 20,000 plates were matched among millions of possible 
matching permutations, the matching algorithm seemed to have performed well. 

Table 4-1 License plate matching results of case 4 
Locations Distance 

(miles) 
Number of 

Matches 
Starting 

Node 
Ending 
Node 

Matching 
Percentage 

Haywood EB → Knox 
EB 

322 17,692 134,319 215,896 13.2% 

Haywood EB → Coffee 
EB 

229 4,872 134,319 268,361 4.0% 

4.2.4 Data Analysis 
Studying the patterns of matched license plates for Haywood EB and Knox EB, we 
observe that: 

• The travel time distribution is different between weekdays and weekends. 

On weekdays, there is a bimodal travel time distribution with a significant 

number of the trucks having a reasonably short travel time around 6 hours.  

On weekends, many trucks have much longer travel times making stops, 

perhaps around Nashville area, along the way (Figure 4-6). 
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Figure 4-6 Journey time distribution for all matched trucks from Haywood to Knox 

• Most matched trucks passed through the Haywood weigh station after noon 

time and very few passed Haywood in the late morning.  This may have 

something to do with the truck traffic demand pattern. There appears to be a 

flood of trucks passing through Haywood in early Saturday hours for some 

reason.  On the other hand, Sunday is quiet with most trucks passing through 
Haywood weigh station after dinner hours. (Figure 4-7). 

 

 

Figure 4-7 Number of trucks matched from Haywood EB to Knox EB per time of day 
and associated mean journey time 
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• Trucks passing through Haywood weigh station during daytime have a lower 

overall journey time.  Trucks passing by during early morning or late 

afternoon tend to take much longer to arrive at Knoxville weigh station. 

(Figure 4-7). 

 

For Haywood EB to Coffee EB, we found that,  

• The travel time distribution seems to be relatively consistent for all days of 

the week (Figure 4-8).  The journey of about 220 miles, which should take a 3 

to 4 hours, saw many trucks taking a far longer time to complete for some 

reason. 

 

Figure 4-8 Travel time distribution for all matched trucks from Haywood EB to 
Coffee EB 

 

• Weekday travel pattern appears to be rather stable and is quite different 

from those on weekends. Most matched trucks passed through the Haywood 

weigh station from noon time to midnight from Sunday through Friday, but 

for Saturday, most matches are found in the early morning.  (Figure 4-9). 

• Trucks passing through Haywood weigh station in the Coffee weigh station 

direction have a wide range of journey times.  It is less stable or predictable 

like the travel time for trucks from Haywood toward Knoxville (Figure 4-9). 
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Figure 4-9 Number of trucks matched from Haywood EB to Coffee EB based on time 
of day and associated mean travel time 

4.2.5 Summary of Findings  

Case 4 study explored the travel pattern of trucks from Haywood EB to Coffee EB 

and Knox EB, which can provide insights into the freight distribution pattern. After 

running the LPR matching algorithm, 13.2% and 4.0% Eastbound trucks from 

Haywood EB were tracked at Knox EB and Coffee EB, respectively. 

The results for Case 4 study show that for trucks from Haywood EB weigh station, 

about three-fourths were matched at Knox EB weight station, while one-fourth was 

tracked at Coffee EB weigh station. In addition, the distribution of journey time 

differs substantially between weekdays and weekends for both routes (Haywood EB 

to Knox EB and Haywood EB to Coffee EB). 

4.3 Thoughts 

The case study in this chapter demonstrates the potential usefulness of TDSHS 

weigh station license plate data in understanding freight truck route choice and 
freight mobility pattern. Some of the pros and cons are identified below. 

The Pros: 

• Temporal Coverage – Unlike the mobile ALPR units used in the first three field 

studies, as presented in Chapter 3 of this report, TDSHS use permanently 

mounted ALPR units, which can operate 24/7/365 as long as the stations are 

open.  This would effectively address the shrinking capture time window issue 

discussed in Chapter 3 that could result in underestimated average journey 

times. 
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• ALPR Accuracy – Permanently mounted ALPR units usually have higher accuracy 

than the mobile units. 

• Already Deployed – These weigh station ALPR units are already deployed by 

TDSHS and have collected tens of millions of license plates in the past.  Using the 

data would not incur additional costs to TDOT.  They could also be incorporated 

into a larger ALPR truck monitoring network that TDOT could develop and 
deploy throughout the state. 

The Cons: 

• Spatial Coverage – Only slightly more than a handful of the weigh stations are 

equipped with operational ALPR units.  To effectively cover all the major truck 

routes, significantly more ALPR stations are needed to obtain more complete 

truck travel statistics. 

• Station Outages – It was evident that there were recurring scenarios when these 

weigh stations were not open during certain time of day or under certain 

conditions.  For the purpose of truck tracking and license plate matching, the 

outage of a single station could render data collected at many other stations less 

useful. 

• Bypassing Rate – For as little as $18/month/truck, truckers equipped with 

PrePass are allowed to bypass weight stations.  Since there are about 600,000 

users of the PrePass system, a portion of the trucks may not be effectively 
tracked by weight station ALPR units. 
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CHAPTER 5  CONCLUSIONS AND RECOMMENDATIONS 

This study accomplished all tasks it set out to complete except the analysis with 

ATRI individual truck GPS trajectory data, which was not available. Instead, TDSHS 

weigh station license plate data were obtained to explore the freight mobility 

patterns. By using the ALPR matching algorithm developed by UTK, we were able to 

evaluate the travel patterns and the proportion of on different routes among the 

matched trucks. For example, Case 3 of this study was conducted to track eastbound 

(EB) trucks using I-40E or I-840E pass through the Nashville metropolitan area.  

The results show that about two-thirds opted for I-40E while the other one-third 
opted for the much longer route that is I-840. 

With the TDSHS weigh station ALPR data, we also attempted to explore the route 

choice of trucks with a long travel distance. For example, for route Haywood EB to 

Coffee EB and Knox EB, 13.2% and 4.0% of eastbound trucks from Haywood EB 

were tracked at Knox EB and Coffee EB, respectively. The analysis results 

demonstrated the potential and challenges of using the existing (already collected) 

weigh station ALPR data for acquiring better understanding of freight mobility 

patterns.  

The project did not yield high matching percentages while attempting the long-

distance truck tracking objective with mobile ALPR units.  This was an expected 

result because long distance tracking using passive ALPR technology has the 

challenge of the traffic flow being spatially diluted and temporally dispersed.  A 

network of permanent ALPR installations would overcome many of the challenges 

we identified below.  The TDSHS ALPR data employed in this study is an existing 

and paid-for source of information to TDOT and could be of use in the future. 

Based on the finding from this study, here are several conclusions and 

recommendations:  

- Passive tracking using portable ALPR devices (as demoed by UT in this 

project) can be labor-intensive and, hence, expensive.  The lower percentages 

of trucks successfully tracked in this study can be attributed to several 

reasons: 

1) The technical challenges associated with long-distance tracking were 

known to be difficult.  The self-learning algorithm that worked well 

with short-distance tracking scenarios did not have enough training 

samples, a high number of trucks traversing both ALPR stations 

within the study time window, to be proficiently “trained.” 

2) The field studies were performed over a few hours, from sunrise to 

sunset for most cases, in the interest of the safety/security of the 

students in the field.  With hundreds of miles to travel for the subject 

trucks, only a portion of them were able to complete the journey 

within the study time window and be tracked at both the start and the 
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end stations.  Many of the trucks stopped along the way for various 

reasons.  This is evident from the fact that a significant number of 

trucks had journey times much longer than the non-stop travel time 

between the two stations otherwise.  As such, many of the trucks 

captured at one station would not show up at the other station, or vice 

versa, during our studies. 

3) A significant number of trucks that happened to pass one station 

would not pass the other station hundreds of miles away because of 

the wide ranges of origins, destinations, and route choices.  For two 

ALPR stations a short distance apart, say 5 miles, on a stretch of 

Interstate highway, it is highly likely a truck would be captured at 

both stations within a few minutes.  But when that distance is 

extended to 50 miles with some stops and alternate routes in 

between, the likelihood that the same truck would be captured at both 

stations declines quickly and requires a longer “time window” to 

allow for the variability in travel time.  When that distance is extended 

to 250 miles with many Interstate junctions and even more potential 

stops in between, the likelihood a truck would pass though the two 

stations within a few hours drops down to single percentage points. 

4) A potential measure to handle the leakage problem of trucks and 

address the constraint of the study’s short time window is to add 

additional ALPR stations between the two end stations hundreds of 

miles apart.  Such would break down the long-distance tracking 

challenge into an array of more handleably shorter-distance tracking 

exercises.  This approach was cost-prohibitive for this pilot study but 

is likely feasible for larger scale implementations by TDOT. 

5) An alternative or a supplement approach to additional ALPR stations 

mentioned above is to use combined and complementary tracking 

mechanisms.  For example, the Bluetooth technology could be used at 

ALPR stations to collect unique identification ID that could then be 

tracked subsequently more economically.  We have used ALPR and 

Bluetooth technologies in a TDOT project previously for vehicle speed 

studies on I-40 in Nashville.  

- Permanent stations deployed at strategic locations, would be more reliable 

than the mobile research units used in this study, if TDOT wants to track 

trucks on a continuous basis.  This could significantly open the narrow “time 

window” our studies were subject to and would track trucks even if the 

journey time were over a day.  Costs would be a consideration depending on 

the associated investment in the ALPR infrastructure and extensiveness of 

deployment and connectivity.  Other considerations include: 
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1) Active GPS tracking is expensive, not in real-time, and TDOT will 

depend on an external for-profit entity, such as ATRI, to provide the 

aggregated statistical information. 

2) Weigh station ALPR data are already being collected and managed by 

TDSHS and should be free to TDOT through state-level interagency 

data-sharing or data-exchange agreements.  UT could help maximize 

the utility of these data sources and curate them for TDOT’s freight 

mobility planning and operation purposes.  In this study, we only 

acquired a limited amount of data from some TDSHS weight stations.  

A more thorough year-round study on the recurring travel patterns of 

all recorded trucks would be desirable.  Currently many of these 

stations do not operate 24/7; a discussion with TDSHS on that could 

make the database more complete and useful. A continuous analysis 

report or an annual report based on the data could be insightful.  If 

and when TDOT deploys its own WIM or roadside weigh stations, data 

from TDSHS stations could still be very valuable. 

3) Using dynamic message signs and other means, such as the WAZE app, 

to entice and shape driver behaviors could be reviewed in the future 

as well.  ALPR stations can be used to monitor and assess the 

performance of such “behavior modification” attempts.   

4) TDOT already has video camera footages from their Smart Way Plus 

system.  A potential use of video imaging-based technology could help 

identify trucks and provide truck counts at strategic locations.  This 

will not actually track the trucks, per se, but will help TDOT gain a 

better understanding of the classifications of vehicles on the State’s 

major Interstate locations. 

5) TDOT’s RDS database has about 800 stations on the state’s Interstate 

highways.  Of these, about 100 stations have a “long count” feature 

estimating “longer” vehicles, such as trucks.  While this feature is not 

yet fully verified, UT has had some initial success in developing, in 

parallel to the long counts, some algorithms to estimate truck 

percentage from the high-resolution RDS raw data.  Further 

development and field verification could lead to a very useful tool for 

the state to obtain much better appreciation of truck traffic, at lane-

by-lane and minute-by-minute level, at all 800 stations across the 
state’s major urban areas. 
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Appendix A. A Short Description of the License Plate Matching Algorithm  

License plate matching techniques are increasingly being used in data collection and 

traffic studies. In general, license plate matching techniques consist of collecting 

vehicle license plate numbers and arrival times at various checkpoints, matching the 

license plates between consecutive checkpoints, and computing travel times from 

the difference in arrival times. There are several techniques developed to conduct 

license plate matching, and considerable work has been done to improve the 

matching process (e.g. matching rate). In 2009, Dr. Han’s team, developed 

algorithms to improve the matching process by incorporating the use of edit 

distance (ED) and travel time thresholds. Edit distance is a technique aiming to 

measure how close two strings (sequences of characters) are from each other based 

on weight functions (which can be unitary values or based on statistical data) to 

compare each individual pair of characters. It was first developed by Wagner and 

Fischer (1974), the edit distance 𝑑(𝑥 → 𝑦) between two strings 𝑥 and 𝑦, can be 

calculated based on the following recurrent equation:  

𝑑(𝑥 → 𝑦) = min {

𝑑(𝑖 − 1, 𝑗 − 1)  +  𝛾(𝑥𝑖 → 𝑦𝑗)         𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛

𝑑(𝑖 − 1, 𝑗) + 𝛾(𝑥𝑖 → 𝜀)  𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛

 𝑑(𝑖, 𝑗 − 1) + 𝛾(𝜀 → 𝑦𝑗)      𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛

 

Where 𝑑(𝑖, 𝑗) is the edit distance between substrings 𝑥[1, … , 𝑖] and 𝑦[1, … , 𝑗], of 𝑥 

and 𝑦, respectively, and 𝑑(0,0) = 0. The 𝜸 are the weight functions. For example, 

𝛾(𝑥𝑖 → 𝑦𝑗) is the cost for the change (substitution) from 𝑥𝑖  to 𝑦𝑗. The cost of 𝛾(𝑥𝑖 → 𝜀), 

where 𝜀 represents the empty character, is incurred by a deletion of 𝑥𝑖, and the cost 

of 𝛾(𝜀 → 𝑦𝑗) is incurred from an insertion of 𝑦𝑗.  

Later in 2012, Oliveira-Neto, Han, and Jeong (2012) increased the matching rate to 

97% by incorporating the use of a newly proposed weight function in edit distance 

(ED) and travel time thresholds. Basically, they devised a new weight function 

(association matrix) where each cell represents the likelihood of certain pair-wise 

character symbol occurrence. For example, there is a relatively high chance of 

certain characters (e.g. ‘‘1,’’ ‘‘0,’’ and ‘‘B’’) being misread (e.g. ‘‘I,’’ ‘‘O,’’ and ‘‘8,’’ 
respectively) by the LPR machine. More details on this were presented in chapter 4. 

In addition,  previous matching techniques always required ground truth data, 

which requires much more work. To overcome this challenge, Dr. Han’s team 

proposed a self-learning algorithm to avoid manually extracting ground truth from 

images. The self-learning algorithm is simple and straight-forward. Initially, it 

started with a blank association matrix. The algorithm analyzes each new plate 

string to continuously improve the matrix. Each new iteration of the matrix is 

compared to the previous one to see if there would be an increase in performance. 

Once the matching performance cannot be improved, the algorithm stops, and the 

final association matrix is ready. The pseudocode of the algorithm is shown below. 
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1. Initialize a blank matrix 𝑪𝟎. 

2. Match the license plates with 𝑪𝒌, and the result is 𝑴𝒌. 

3. Get the association matrix 𝑪𝒌+𝟏 based on 𝑴𝒌. 

4. Stop if the association matrix converges (‖𝑪𝒌 − 𝑪𝒌+𝟏‖ < 𝜀). 

A.1 Association Matrix  

The Edit Distance and probability method are both based on the association matrix. 

Previously, the association matrix has been derived from the LPR data and ground 

truth data. For an association matrix 𝑪 in two LPR stations (𝑔, ℎ), there is a square 

matrix whose elements are the conditional probabilities 𝑝(𝑏|𝑎) of observing a 

character reading 𝑏 in station ℎ for a given character reading 𝑎, in station 𝑔. The 

conditional probability is calculated from the two confusion matrices in any two 

LPR stations. The element of the confusion matrix is the odds of the LPR machines 

reading (diagonal elements) or misreading characters (off-diagonal elements). 

However, the estimation of the truth matrix requires extensive manual extraction by 

visual inspection of the ground truths of many plate images. To overcome this, a 

self-learning algorithm was developed to get the association matrix. It starts with a 

blank association matrix, and iteratively learns from the matched license plates in 

two LPR stations. By the end, when the association matrix converges, then the 

association matrix is ready. 

A.2 Edit Distance  

The probabilities for each character are acquired from the association matrix and 

are then used in the equation below to calculate the weighted ED for each plate 

string. The most likely match or sequence of editing operations is given by the 

sequence with the highest probability, which implies the minimization of the 
negative natural logarithm, as follows (Oliveira-Neto et al., 2013): 

𝑑(𝑥 → 𝑦) = min {∑ log(
1

𝑝(𝑖𝑘 , 𝑗𝑘)
)

𝑛

𝑘=0

} 

Where 𝑛 is the total number of characters in the plate string, the 𝑝(𝑖𝑘 , 𝑗𝑘) is the 

condition probability of the character pair (𝑖𝑘, 𝑗𝑘). To find the match, we calculated 

every possible match of two LPR stations within a travel time window. Then, the 

plate match with the smallest ED is selected as a potential match and is checked to 

see if it falls below the ED threshold.  

A.3 Probability Method  

The probability method is used to calculate the likelihood that two license plates are 

a match, which is expressed as a percentage, is more easily understood than ED and 

can be explained in a matter of minutes to almost anyone. To calculate the 

likelihood, we also need to use the association matrix. First, we compute the 

probability that two plate strings are a match. The equation is shown below: 
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P𝐸|𝑀𝑎𝑡𝑐ℎ = ∏ 𝑝(𝑖𝑘 , 𝑗𝑘)

𝑛

𝑘=1

 

Where 𝑝(𝑖𝑘, 𝑗𝑘) is the probability of having a character 𝑖𝑘 at station 𝑔 and 𝑗𝑘 at 

station ℎ, can be obtained from the association matrix, 𝑛 is the number of characters 
on the license plate. 

For a case of non-match, the probability of having a character 𝑖𝑘 at station 𝑔 will not 

be correlated with the character 𝑗𝑘 at station ℎ. Then the probability of having 𝑖𝑘 at 

station 𝑔 is affected by the distribution of characters in population. Since there are 

37 possible characters (A to Z, 0 to 9, and a null character), the probability of having 

𝑖𝑘 at station 𝑔 is calculated simply by 1/37. Therefore, the probability of the event 

with the condition of a non-match, P𝐸|𝑁𝑜𝑛−𝑀𝑎𝑡𝑐ℎ, can be calculated as follows: 

P𝐸|𝑁𝑜𝑛−𝑀𝑎𝑡𝑐ℎ = ∏ 𝑝(𝑖𝑘, 𝑗𝑘) =
1

37

𝑛𝑛

𝑘=1

 

Now, using Bayes’ theorem, we can reformulate the equation to calculate the 

probability of matching with the given pair of conditions (Whetsel, 2017). 

P𝑀𝑎𝑡𝑐ℎ|𝐸 =
P𝐸|𝑀𝑎𝑡𝑐ℎ ∗ 𝑃𝑀𝑎𝑡𝑐ℎ

P𝐸|𝑀𝑎𝑡𝑐ℎ ∗ 𝑃𝑀𝑎𝑡𝑐ℎ + P𝐸|𝑁𝑜𝑛−𝑀𝑎𝑡𝑐ℎ ∗ 𝑃𝑁𝑜𝑛−𝑀𝑎𝑡𝑐ℎ
 

Here, the 𝑃𝑀𝑎𝑡𝑐ℎ  is the probability of matching without considering the given pair or 

event, which is equivalent to the probability of capturing the same vehicle at station 
𝑔, when the vehicle is captured at station ℎ.  

𝑃𝑀𝑎𝑡𝑐ℎ =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑒𝑙𝑠 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑 𝑎𝑡 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝑔 𝑎𝑛𝑑 ℎ 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑 𝑎𝑡 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 ℎ
 

Last, the values are ranked: the match with the highest probability is selected as the 

potential match. 
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Appendix B. Field Study ALPR Equipment Setup  

 

 

Figure B-1 LPR device setup 

 

 

Figure B-2 On-site LPR data collection in April 8-9, 2017 
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Figure B-3 On-site LPR data collection in May 8, 2017 
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Figure B-4 Sample photos of captured trucks 
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Appendix C. Sample Weigh Station ALPR Data 

We obtained the weigh station ALPR data from TDSHS. The data is a nearly 3-month 

(November 2016 to February 2017) license plates data for nine weigh stations, 
which are: 

• Coffee Co Manchester I-24 EW MM:115 (x2) 

• Giles Co I-65 N MM:5 

• Greene Co I-81 S MM:21 

• Haywood Co I-40 EW MM:50 (x2) 

• Knox Co I-40 W no data 

• Knox Co I-40 E 

• Unicoi Co I-26 

The data contains a lot of information, like the license plate, time, license 

jurisdiction, lane ID, vehicle ID, and location. This information can be used to track 

trucks and explore freight mobility patterns. While several stations do not have the 

associated license plates data, which may due to the malfunction or other reasons. 

The table below is the number of license plates captured for each weigh station. 
Also, a sample weigh station ALPR data is given. 

 

Table C-1 Number of license plates captured at each weigh station 

Weigh 
Station 

License Plates Number  Weigh Station License Plates Number  

Coffee EB 268, 361 Coffee WB 165, 561 
Haywood EB 134, 319 Haywood WB 132, 832 
Knox EB 215, 689 Knox WB 0 
Giles NB 123, 084 Unicoi 31, 449 
Greene 0   
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Figure C-1 Sample of weigh station license plate data  
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Appendix D. Sample ALPR Matching Results  

 

 

Figure D-1 Sample of results of LPR matching 
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Appendix E. Literature Review of Truck Tracking  

 

A number of technologies and practices for vehicle/truck tracking were identified in 

a literature review conducted by the University of Tennessee. 

Inductive Loop Detector (ILD) 

Inductive Loop detector (ILD) is the most prevalent surveillance system for traffic 

systems. ILD can not only generate inductive signature data, but it can also estimate 

vehicle speed and vehicle length. Other useful information might be the time 

difference between two proposed matching signatures at two distinct ILD stations. 

Sun et al. (1999) provides one of the first vehicle reidentification study using ILD 

data. It first extracts a multi-dimensional vector, concatenating all features, then 

trying to find closest upstream feature given any downstream features. A multi-

objective optimization problem is formulated, and a Pareto optimal solution is given 

by narrowing down searching space to consider one constraint at a time by 

lexicographic order (objective goals indexed by importance). The target of that 

study aimed to find the traffic performance between two ILD stations and get 

sectional traffic measures like sectional travel speed. Data from two loop stations on 

SR-24 freeway in Lafayette, 1.2 miles apart, were collected. One moderate traffic 

dataset and one congested traffic dataset were collected with video recordings as 

ground truth data. The results showed that the sectional traffic estimates were close 

to ground truth data, but the method of interpolating point measures of speed and 

densities could not represent sectional traffic data. 

Another pioneering study by Abdulhai et al. (2003) further discussed machine 

learning techniques’ ability in improving this vehicle re-identification problem at 

successive ILD stations. Distance measure that is insensitive to affine 

distortion/normalization of spatiotemporal patterns were defined. A (back-

propagated) neural network was trained using a genetic algorithm to measure the 

distances, thus making better matches compared to traditional distance measures. 

For each ILD waveform, the distance between that waveform and a group of 10, 20 

or 30 upstream vehicles were calculated using neural networks, conventional 

distance measures and spatiotemporal measures for both the moderate traffic case 
and congested traffic case. 

1. Sun C, Ritchie SG, Tsai K, Jayakrishnan R. Use of vehicle signature analysis and 

lexicographic optimization for vehicle reidentification on freeways. 

Transportation Research Part C: Emerging Technologies. 1999 Aug 1;7(4):167-

85. 

2. Abdulhai B, Tabib SM. Spatio-temporal inductance-pattern recognition for 

vehicle re-identification. Transportation Research Part C: Emerging 

Technologies. 2003 Jun 1;11(3-4):223-39. 
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WIM & Loop Detectors 

Weigh-in-motion (WIM) stations are data collection points to collect heavy vehicle 

information (vehicle’s presence, the weight of axles, axles spacing, speed, etc.) using 

a set of different sensors (inductive loop detector, piezoelectric sensor, bending 

plate sensor, axle sensor, etc.). The sensors are embedded on the highway, so the 

data is collected while one is moving along. There are only around 800 WIM station 

in the United States, while there are much more inductive loop detector 

infrastructures. Jeng et al (2014) provided a method to track heavy vehicles using 

both WIM data and inductive loop signature data, in case the WIM data is not 

present or the sensor is a different model. A framework was developed and 

consisted of two different models: a classification model and a reidentification 

model. For each WIM station, the classification model tries to classify the truck 

classes using information like axle number, spacing, weigh, etc. The reidentification 

model tries to reidentify by matching the record of the same truck from the 

upstream station, using a set of algorithms like decision tree, wavelet-k nearest 

neighbor, etc. Based on the availability of data sources (availability of vehicle 

detection station (VDS) or WIM), a different comparison algorithm was designed to 

match vehicles. “Travel time window” was also used in the algorithm to keep 

reasonable matchings. Notice that the study only matches the vehicles reaching the 

downstream station in reasonable time, only considering if they never left the 

highway between stations. In other words, for those vehicles go off for 

loading/unloading or other activities, they would not be paired in the case. The 

"travel time window” was estimated using Caltrans performance measuring system 

(PeMS). WIM data and loop data can also be useful in distinguishing those vehicles 

as these attributes may change when vehicle’s loading status or tractor is changed. A 

case study using the data from two WIM stations 19 miles apart was also studied. 

The ground truth matching rate was estimated by manually checking vehicle plate 

information. Compared with using only vehicle signature data, when using both 

vehicle signature data and WIM data, the matching performance improved 

significantly based on the defined reidentification performance metrics. Four 

indexes were proposed to measure the performance of the matching algorithm in 

matching tasks: 1) Ideal Match Rate; 2) Correct Match Rate; 3) Over Match Rate; 4) 

Error Rate. Notice that only a small portion of trucks upstream could travel to 

downstream or vice versa. 

The same idea of using WIM and inductive loop detectors was further investigated 

by Hyun et al. (2017). With the aim of estimating flows of long-haul trucks across a 

region, a selective weighted Bayesian model was proposed. The model tried to 

explore the marginal distribution of each data feature in discerning ability between 

matched pairs and non-matched pairs (the labels are paired by manually identifying 

plate information). The features with a higher information gain (i.e., discerning 
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abilities) were assigned with higher weights. The distribution traits were classified 

in terms of distinguished vehicles and a joint probability model under the 

(weighted) naïve Bayesian model. This was used to predict if two observations were 

a match or not. Two WIM stations along I-5, 26 miles apart, were used for 

developing the model, with vehicles manually labeled using plate information. The 

dataset was separated into a training set and a testing set to develop and evaluate 

the model. Two WIM stations along SR-99, 65 miles apart, were used for the case 

study applying the trained model to see its usability for long distance traveling. 

1. Jeng ST, Chu L. Tracking heavy vehicles based on weigh-in-motion and inductive 

loop signature technologies. IEEE Transactions on Intelligent Transportation 

Systems. 2014 Jul 17;16(2):632-41. 

2. Hyun KK, Tok A, Ritchie SG. Long distance truck tracking from advanced point 

detectors using a selective weighted Bayesian model. Transportation Research 
Part C: Emerging Technologies. 2017 Sep 1;82:24-42. 

 
GPS Data 

The above papers mainly focus on studying the vehicle re-identification between 

successive point measurements at data collecting stations. GPS data, on the other 

hand, can track a vehicle constantly, which provides the opportunity to look into the 

behavior and operation details of trucks. Thakur et al. (2015) developed a 

procedural algorithm to identify the trip segments and stop points. Furthermore, 

the algorithm tried to distinguish the stops for logistics operations from other 

purposes including refueling, congestion, resting, etc. GIS polygons of major truck 

stops were used in the algorithm. 145 million GPS records from the American 

Transportation Research Institute (ATRI) with origin/destination (OD) in Florida 

over 4 months were used in the study. The procedures and implementation claimed 

to be useful for converting raw GPS records to useful OD truck information, 

considering the data scale and the state-wide geometry scale. Zanjani et al. (2015) 
further estimated the OD matrix of traffic within, into, and out of Florida state. 

1. Thakur A, Pinjari AR, Zanjani AB, Short J, Mysore V, Tabatabaee SF. Development 

of algorithms to convert large streams of truck GPS data into truck trips. 

Transportation Research Record. 2015 Jan;2529(1):66-73. 

2. Zanjani AB, Pinjari AR, Kamali M, Thakur A, Short J, Mysore V, Tabatabaee SF. 

Estimation of statewide origin–destination truck flows from large streams of GPS 

data: Application for florida statewide model. Transportation Research Record. 

2015 Jan;2494(1):87-96. 

 
RFID 
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Radio-frequency identification (RFID) is an automatic identification technology, 

which is widely applied to many industries. RFID is widely used in developing 

countries for transportation management. In highway systems, open road tolling 

(ORT) systems are also widely implemented using RFID technologies. Wang et al. 

(2010) proposed a way to use RFID systems to monitor highway running vehicles 

and identify speeding vehicles. Ren et al. (2009) discussed the design details of the 

tollway usage of RFID system. According to Chinese state news media Xinhua News, 

by December 23rd in 2019, there were 197 million electronic tollway collection 
system (ETC) users . The number had increased by over 102 million in just one year.  

Digital license plates with RFID imbedded is another practice in transportation. Abd 

Rahman et al. (2013) and Liang et al. (2017) designed a license plate with an RFID 

tag integrated. According to media, in the city of Shenzhen, China, 8 types of 

vehicles, (including school buses, heavy duty vehicles, etc.) were required to install 
RFID tags for better management. 

1. Hongjian W, Yuelin T, Zhi L. RFID technology applied in highway traffic 

management. In2010 International Conference on Optoelectronics and Image 

Processing 2010 Nov 11 (Vol. 2, pp. 348-351). IEEE. 

2. Zhengang R, Yingbo G. Design of electronic toll collection system in expressway 

based on RFID. In2009 International conference on environmental science and 

information application technology 2009 Jul 4 (Vol. 3, pp. 779-782). IEEE. 

3. Abd Rahman T, Rahim SK. RFID vehicle plate number (e-plate) for tracking and 

management system. In2013 International Conference on Parallel and 

Distributed Systems 2013 Dec 15 (pp. 611-616). IEEE. 

4. Liang Z, Ouyang J, Yang F, Zhou L. Design of license plate RFID tag antenna using 

characteristic mode pattern synthesis. IEEE Transactions on Antennas and 
Propagation. 2017 Jul 31;65(10):4964-70. 

 

Image and License Plate Matching 

Surveillance video information is very useful in tracking vehicles. Jelaca et al. (2013) 

designed a method to track vehicles. To quickly matching vehicles, a set of 

signatures were extracted from the images by project profiles vertically, 

horizontally, diagonally, etc. If one image was of low quality, a tuple of images was 

projected together to form one signature. Tunnel surveillance video recordings 

were used to match vehicles. The project was done before the explosion of deep 

learning technologies, although many ideas can perform comparably to  deep 

learning. The algorithm is claimed to work online. 

Oliveira-Neto et al. (2012) proposed an online license plate matching procedure 

using license plate recognition technology. Under a two-point LPR survey, license 

plate information might be misread at one or both stations. A character-transition 

matrix was  used to measure the probability of a true character given predicted 
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ones. With both stations having their own transition matrix, the probability of an 

upstream station’s identified character given its downstream character can be 

estimated. Furthermore, a generalized edit-distance (GED) was used for describing 

the information gain/loss in a better way. Time passage information was was 

considered between stations to speed up the searching process and make the 

algorithm more efficient. 

1. Oliveira-Neto FM, Han LD, Jeong MK. An online self-learning algorithm for 

license plate matching. IEEE Transactions on Intelligent Transportation Systems. 

2013 Aug 2;14(4):1806-16. 

2. Hyun KK, Tok A, Ritchie SG. Long distance truck tracking from advanced point 

detectors using a selective weighted Bayesian model. Transportation Research 

Part C: Emerging Technologies. 2017 Sep 1;82:24-42. 

3. Jelača V, Pižurica A, Niño-Castañeda JO, FríAs-VeláZquez A, Philips W. Vehicle 

matching in smart camera networks using image projection profiles at multiple 

instances. Image and Vision Computing. 2013 Sep 1;31(9):673-85. 

 

Deep Learning (Vehicle Re-Identification) 

With the increase of video surveillance data and the fast development of computer 

vision technology using deep learning technology, a large number of researchers are 

proposing new deep learning methods to the vehicle reidentification problem. Liu et 

al. (2013) proposed a convolutional neural network (CNN). Unlike vehicle detection, 

tracking and classification problem, vehicle re-identification (Re-Id) can be found as 

near duplicate image retrial (NDIR) problem. Two contributions are made for this 

project: 1) a new dataset called VehicleReID (VeRi) “containing 40,000 images and 

619 vehicles captured by 20 cameras covering a 1.0 km2 area in 24 hours”. The data 

was labeled manually including drawing boundary boxes (also abbreviated BBoxes), 

adding text information of color, vehicle type and brands. Moreover, all 619 vehicles 

in the dataset were captured by 2-18 cameras, which gave many true matchings 

samples for the Re-Id task. 2) The research group compared the performance of a 

set of methods, including texture based feature (BOW-SIFT), Color based feature 

(BOW-CN), semantic feature extracted by deep neural network (AlexNet, 

GoogleLeNet), feature fusion (AlexNet+BOW-CN), Fusion of Attributes and Color 

features (FACT)). The results showed that while BOW-SIFT performs badly, all other 

methods have a similarly good performance. FACT, summing the weights of rank 

scores of each feature, unsurprisingly, performs the best. The team proposed using 

FACT for coarse vehicle identification and then using vehicle plate recognition to 

further improve the results. 

Liu et al. (2016) further developed their own specified neural network for vehicle 

Re-Id problem named PROgressive Vehicle re-ID (PROVID), using on the same VeRi 

dataset proposed before. There were three major steps for the developed method: 
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1) an appearance-based searching step; 2) a license plate fine match; and 3) a 

spatiotemporal re-rank step. The model borrows two useful principles in the 

searching process: coarser-to-finer principle and near-to-distance search. The first 

step is to identify vehicles sharing similar features (e.g., color, textile, etc.) to narrow 

down the searching scope down to a few potential candidates. After narrowing 

down the searching scope, the second step is to look into license plate recognition to 

compare plates for matching. For the license plate recognition, the group exploited 

the Siamese Neural Network for license plate verification. Thirdly, based on the 

spatiotemporal distribution of vehicles, a spatiotemporal proximity index was 

designed to describe similarity between any proposed matching images. To combine 

the spatiotemporal information, either a post-fusion strategy or re-ranking strategy 

can be employed. 

Liu et al. (2018) proposed a method of identifying local regions by identifying 

unique decorations, stickers in the front windshield. The Region-Aware deep Model 

(RAM) method achieves a significantly better performance compared to many other 
methods. 

More developments in deep learning have been made in recent years. Huang et al. 

(2019) proposed a vehicle reidentification model using a temporal attention model 

and matadata-reranking techniques. The group collected some video clips for 

training the re-ID task. A frame-level feature (one frame from a video clip) was 

extracted by using the key point identification method and identifying 36 key points 

on the vehicle. Then, these points were used to estimate the orientation of vehicles 

by relationship of these points in a 2D image, and this information was mapped into 

18-dimensional feature outputs. This information can help us to tell whether the 

frame’s viewpoint is back view, front view, side view, etc. With this information, the 

group developed a viewpoint-aware temporal attention model. Each video clips 

contained a set of video frames. For each video frame in a video clip, both viewpoint 

features and CNN features (for appearance) were generated and fed to the temporal 

attention-based method for frames in the video clip. Thus, the model learns more 

about one vehicle observed at different angles. The re-rank strategy was applied by 

using metadata information. The metadata included type, brand and color. It ranked 

2nd in the AI city challenge 2019 dataset achieving mean average precision (mAP) of 

79.17%. 

1. Liu X, Liu W, Ma H, Fu H. Large-scale vehicle re-identification in urban 

surveillance videos. In2016 IEEE International Conference on Multimedia and 

Expo (ICME) 2016 Jul 11 (pp. 1-6). IEEE. 

2. Liu X, Liu W, Mei T, Ma H. A deep learning-based approach to progressive vehicle 

re-identification for urban surveillance. In European Conference on Computer 

Vision 2016 Oct 8 (pp. 869-884). Springer, Cham. 
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3. Liu X, Zhang S, Huang Q, Gao W. Ram: a region-aware deep model for vehicle re-

identification. In2018 IEEE International Conference on Multimedia and Expo 

(ICME) 2018 Jul 23 (pp. 1-6). IEEE. 

4. Zhou Y, Shao L. Aware attentive multi-view inference for vehicle re-

identification. In Proceedings of the IEEE conference on computer vision and 

pattern recognition 2018 (pp. 6489-6498). 

5. Huang TW, Cai J, Yang H, Hsu HM, Hwang JN. Multi-View Vehicle Re-

Identification using Temporal Attention Model and Metadata Re-ranking. In 
CVPR Workshops 2019 Jun 16 (Vol. 2). 
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Appendix F. Scholarly Papers by UTK on LPR Matching Methodology 
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